พยากรณ์โรคเลปโตสไปโรสิส มกราคม-ธันวาคม 2564

โรคเลปโตสไปโรสิส

สถานการณ์โรคเลปโตสไปโรสิส (Leptospirosis) ปี 2563 พบผู้ป่วย 1,603 ราย เสียชีวิต 21 ราย คิดเป็นอัตราป่วย 2.41 ต่อแสนประชากร อัตราป่วยตาย 1.31% กลุ่มอายุที่พบมากที่สุด 3 อันดับ คือ 45-54 ปี (18.90 %) 35-44 ปี (18.03 %) 25-34 ปี (16.28 %) อาชีพส่วนใหญ่เป็นเกษตรร้อยละ 39.1 รับจ้างร้อยละ 25.5 และนักเรียนร้อยละ 14.2 ภาคที่มีอัตราป่วยต่อแสนประชากรสูงที่สุด คือ ภาคใต้ (9.47 ต่อแสนประชากร) โดยจังหวัดที่มีอัตราป่วยสูงที่สุด 5 อันดับ ได้แก่ ระนอง ยะลา พังงา พัทลุง และ สงขลา ตามลำดับ ซึ่งช่วงต้นเดือนพฤศจิกายน เป็นต้นมา เป็นช่วงเวลาที่ภาคใต้เข้าสู่ฤดูมรสุม ฝนตกหนัก และ เกิดภาวะน้ำท่วมในหลายจังหวัด ซึ่งน้ำจะเป็นตัวพาเชื้อมาสู่คนมากขึ้น ทำให้พบจำนวนผู้ป่วยในภาคใต้มากขึ้น ระหว่างเดือนพฤศจิกายน 2563 – ต้นเดือนมกราคม 2564 สำหรับปี 2564 (ข้อมูลวันที่ 1 ม.ค. – 6 ก.พ. 64) พบผู้ป่วย 105 ราย เสียชีวิต 2 ราย อัตราป่วย 0.16 ต่อแสนประชากร อัตราป่วยตาย 1.9%

สาเหตุของโรคฉี่หนูจากข้อมูลจากระบบเฝ้าระวังทางระบาดวิทยา (รายงาน 506) ในช่วง 5 ปีที่ผ่านมา (พ.ศ. 2559 – 2563) จำนวนผู้ป่วยส่วนใหญ่จะมากที่สุดในช่วงสิงหาคมถึงตุลาคม จากการคาดการณ์จำนวน ผู้ป่วยรายเดือนในช่วงเดือนมกราคม 2564 ถึงธันวาคม 2564 ด้วยวิธีอนุกรมเวลา (Time series analysis) โดยใช้เทคนิค SARIMA (0,1,0)(1,1,1)₁₂ โดยอาศัยฐานข้อมูลตั้งแต่มกราคม 2557 ถึง พฤศจิกายน 2563 คาดว่า จำนวนผู้ป่วยระหว่างปี 2564 มีแนวโน้มสูงขึ้นเล็กน้อยจากปี 2563 ของเดือนเดียวกัน โดยมีค่า ความคาดเคลื่อนเฉลี่ยเดือนมกราคม-มีนาคม 63 เท่ากับ 19.00% มีนาคม-มิถุนายน 64 เท่ากับ 18.92% กรกฎาคม-กันยายน 64 เท่ากับ 12.34% และตุลาคม-ธันวาคม 64 เท่ากับ 26.13%

ตารางที่ 1 พยากรณ์จำนวนผู้ป่วยโรคฉี่หนูเดือนมกราคม-ธันวาคม ปี 2564

จากการสถานการณ์โรคฉี่หนูที่เกิดขึ้นตั้งแต่ปี 2557-2563 พบว่าจำนวนผู้ป่วยมักขึ้นสูงช่วงหน้าฝน รวมถึงช่วงมีน้ำท่วมขังจากมรสุม จากข้อมูลปริมาณน้ำมีการคาดการณ์ว่าในปี 2564 มีภาวะท่วมกระจุก แล้งกระจาย โดยประเทศไทยจะเข้าสู่ภาวะลานีญาตั้งแต่เดือนสิงหาคม 2563 ส่งผลให้ฝนตกหนักที่ภาคใต้ ทำให้เกิดน้ำท่วมขัง ส่วนภาคอื่นจะไม่เกิดฝนจนกว่าจะถึงเมษายน 2564 ทำให้ภาพรวมทั้งปีจะมีปริมาณฝน แม้มากกว่าปกติร้อยละ 9-10 ยกเว้นภาคเหนือตอนบน ภาคตะวันออก และภาคตะวันออกเฉียงเหนือที่มี ปริมาณน้ำฝนน้อยกว่าปกติในบางแห่ง ในปี 2564 ฝนจะสลับกันมาน้อยบ้างมากบ้าง ทั้งนี้ฝนจะตกมาก ภาคเหนือที่ จ.เชียงราย น่าน ภาคตะวันออกที่ จ.จันทบุรี ตราด ภาคตะวันตอกเฉียงเหนือตอนบน ฝนจะมีปริมาณน้อย ภาคใต้ที่ จ.ภูเก็ต จากข้อมูลสถาบันสารสนเทศทรัพยากรน้ำรายงานว่าปี 2564 ฝนจะมา ตั้งแต่เดือน เม.ย.อาจเกิดพายุฤดูร้อน ปริมาณน้ำฝนจะมากกว่าค่าเฉลี่ย 60% จากนั้นจะลดลงในเดือน พ.ค. และจะเริ่มกลับมาเพิ่มขึ้นใน มิ.ย. และทิ้งช่วงในเดือน ก.ย.-ส.ค. และจะกลับมาตกหนักอีกครั้งในเดือนก.ย. ในเดือน ต.ค. ฝนจะหยุดและกลับมาตกอีกครั้งในเดือน พ.ย.-ธ.ค. โดยเฉพาะภาคใต้ (แหล่งที่มา: https://web.mwa.co.th/ewt_dl_link.php?nid=65623)

เมื่อนำค่าการพยากรณ์เทียบกับปริมาณน้ำฝนที่คาดประมาณ ควรเน้นการประชาสัมพันธ์เพื่อเฝ้าระวัง และป้องกันโรคฉี่หนูในพื้นที่โดยแยกรายภาคตามปริมาณน้ำฝน และกระตุ้นการดำเนินงานในพื้นที่ให้เข้มข้น และเฝ้าระวังการเกิดโรคฉี่หนูในเดือนเมษายน มิถุนายน กันยายน และภาคใต้ในเดือนพฤศจิกายน ถึงธันวาคม โดยเฉพาะในพื้นที่มีการท่วมขังนาน ในส่วนประชาชนทั่วไปที่มีอาชีพทำนา หาปลา ทำสวนซึ่งมีการลงแช่น้ำ นานหรือใช้เท้าเปล่าเดินในที่มีน้ำท่วมขัง ควรเน้นการประชาสัมพันธ์การป้องกันตัวเองจากโรคและรีบไปพบ แพทย์เพื่อเข้ารับการดูแลรักษาหลังมีอาการสงสัยโรคเลปโตสไปโรสิสเพื่อป้องกันการเกิดภาวะแทรกซ้อนและ เสียชีวิต

ขั้นตอนการวิเคราะห์

1. Model specification ระบุเลือกสมการ หลังจากกด define date เพื่อใส่ชื่อเดือนปีจึงไปกดเลือก กราฟดูเพื่อกำหนดสมการจากภาพ

กราฟที่ได้ จากกราฟจะเห็นได้ว่ามีการขึ้นในช่วงก.ย.ของทุกปีและดูมีแนวโน้มเล็กน้อยจึงใช้ model exponential smoothing และ ARIMA วิธีเลือกกลับไปดูจากเอกสารการเรียนได้

2. Model fitting หาค่าที่แท้จริงของสมการแล้วเอาข้อมูลไปใส่ เลือก create models และไปเลือก ดังรูป

Exponential smoothing เราดูว่าจะเลือก Simple seasonal/winter/winter multi ให้เลือกแบบ ต่อไปนี้ ถ้าไม่มีแนวโน้มให้เลือกได้แค่ Simple seasonal แต่ถ้ามีแนวโน้มเลือกได้ทั้ง 3 แบบ เมื่อเลือก เสร็จให้กดที่ภาพด้านล่างเพื่อ fit กราฟ (ทฤษฎีสามารถอ่านในเอกสารสอนได้)

Variables Statistics Plots Output F	Filter Save Options
Plots for Comparing Models	
Stationary R square	Maximum absolute percentage error
R square	Maximum absolute error
Root mean sguare error	Normalized BIC
Mean absolute percentage error	Residual autocorrelation function (ACF)
Mean absolute error	Residual partial autocorrelation function (PACF)
Plots for Individual Models	
Series	Residual autocorrelation function (ACF)
Each Plot Displays	Residual partial autocorrelation function (PACF)
✓ Observed values	
✓ Forecasts	
✓ Fit values	
Confidence intervals for forecasts	
Confidence intervals for fit values	

กราฟแสดงการ fitting เปรียบเทียบกราฟข้อมูลจริงและจากสมการ

Date

Model Simple	R-				
seasonal	squared	P-value	MAPE	MAE	
		0.000	24.073	46.108	

ARIMA ก่อนไปเข้าสมการให้ปรับกราฟใน sequence chart ว่า มีแนวโน้ม? ถ้ามีให้ติ๊กเลือก difference = d มีฤดูกาลไหม? ถ้ามีให้ติ๊กเลือก seasonally difference = D มีการแกว่งไหม? ถ้ามีให้ติ๊กเลือก Natural log = log

พอทำแล้วกราฟถูกปรับจึงค่อยไปดูกราฟ AFC และ PAFC ใน autocorrelation

q=8 Q=1

p=9 P=1

SARIMA (0,1,0)(1,1,1)₁₂ ตอนเข้าโปรแกรมอย่าลืม log เพราะเราทำกราฟจากการปรับ log มา Model SAREMA

$(0,1,0)(1,1,1)_{12}$	R-squared	P-value	MAPE	MAE	
		0.655	18.042	35.147	

 Model diagnosis ดูว่า model ใช้ได้ไหม มาดูค่า MAPE และ MAE ซึ่งเป็นการบอกค่า error เมื่อเทียบจากด้านบนพบว่าวิธี SARIMA (0,1,0)(1,1,1)₁₂ MAPE และ MAE น้อยกว่าจึงเลือกไปใช้

4. Model validation เอาไปเปรียบเทียบกับของจริงหรือเรียกขั้นนี้ว่า Backcast วิธีคือตัดค่าปีก่อนที่จะ forecast เช่น ตอนนี้เราจะทำพยากรณ์ม.ค.-ธ.ค.ปี64 เราจะตัดข้อมูล ม.ค.-ธ.ค.ปี63 แล้วจึงค่อยนำไปขั้นตอน ข้อ2อีกครั้งใน model เดิมที่เราเลือกไว้ กรณีนี้เราเลือก SARIMA (0,1,0)(1,1,1)₁₂ ไว้ นำข้อมูล Backcast หา ค่า MAPE จากการคำนวณ excel เพื่อไปเขียนบอกค่าความคลาดเคลื่อนในสรุป จากนั้นนำกลับไปนำค่าจริง ไปพยากรณ์ปี64

ค่า MAE และ MAPE จากการคำนวณ excel จาก forecast ของ backcash (0,1,0)(1,1,1)₁₂ นำค่าตัวนี้ไป เขียนที่สรุปผล

mean error	MAE	MPE	MAPE	MSE	RMSE
24.79333	25.93667	0.155675	0.16921	1468.377	38.31941
MAPE ม.คมี.ค.62		0.19006	2 MAPE i	า.คก.ย.62	0.123445
MAPE เม.ยมิ.ย.62		0.18915	5 MAPE	 พ.ย.62	0.261264

5. Model application

forecast SARIMA (1,0,4)(2,1,0)₁₂

Forecast
rorccust

Model	Jan-64	Feb-64	Mar-64	Apr-64	May-64	Jun-64	Jul-64	Aug-64	Sep-64	Oct-64	Nov-64	Dec-64
case-Model_1	146.04	101.54	98.55	99.99	130.55	180.92	219.15	234.92	233.55	244.91	195.72	158.7